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SUMMARY

The ubiquitous biological nanomotors were classified into two cate-
gories in the past: linear and rotation motors. In 2013, a third type of
biomotor, revolution without rotation (http://rnanano.osu.edu
/movie.html), was discovered and found to be widespread among
bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA)
bacteriophages. This review focuses on recent findings about various
aspects of motors, including chirality, stoichiometry, channel size,
entropy, conformational change, and energy usage rate, in a variety of
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well-studied motors, including FoF1 ATPase, helicases, viral ds
DNA-packaging motors, bacterial chromosome translocases,
myosin, kinesin, and dynein. In particular, dsDNA translocases are
used to illustrate how these features relate to the motion mechanism
and how nature elegantly evolved a revolution mechanism to avoid
coiling and tangling during lengthy dsDNA genome transportation
in cell division. Motor chirality and channel size are two factors that
distinguish rotation motors from revolution motors. Rotation
motors use right-handed channels to drive the right-handed dsDNA,
similar to the way a nut drives the bolt with threads in same
orientation; revolution motors use left-handed motor channels to
revolve the right-handed dsDNA. Rotation motors use small
channels (�2 nm in diameter) for the close contact of the channel
wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt;
revolution motors use larger channels (�3 nm) with room for the
bolt to revolve. Binding and hydrolysis of ATP are linked to different
conformational entropy changes in the motor that lead to altered
affinity for the substrate and allow work to be done, for example,
helicase unwinding of DNA or translocase directional movement of
DNA.

INTRODUCTION

Motors impact almost all aspects of daily life. For example,
electric motors are machines that convert electrical energy

into mechanical energy and further into kinetic energy to drive the
operation of other devices, and these motors have been around
since the 1740s, when Scottish monk Andrew Gordon introduced
a simple electrostatic device (1). Similarly, bionanomotors are
miniscule protein machines that produce mechanical motion by
converting an energy source into work. These biological motors
are responsible for most forms of motion in all life forms. Bio-
nanomotors are essential in all aspects of crucial cellular processes
critical to survival, such as mitosis, DNA replication, DNA repair,
homologous recombination, Holliday junction resolution, RNA
transcription, ATP synthesis, muscle contraction, viral genome
packaging, and directional motility of cellular components to
their destinations. Bionanomotors make possible the occurrence
of otherwise thermodynamically unfavorable processes.

In the past, biological nanomotors were classified into two cate-
gories: linear and rotational motors. Recently, a third type of biolog-
ical motor mechanism, revolution without rotation, was described
and found to be widespread in bacteria, eukaryotic viruses, and ds-
DNA bacteriophages (http://rnanano.osu.edu/movie.html). Its im-
pact is evident, as with the viral DNA-packaging motor, which was
thought for decades to be rotational (2). Recent studies have revealed
that none of the motor components rotates to any significant degree
during genome packaging (3–7). The finding of revolution motion
has now been applied to many mysteries regarding biological motor
structures, functions, and mechanisms.

This review focuses on recent findings about various aspects of
motor function, including chirality, stoichiometry, channel size,
entropy and conformational change, and energy usage, in a wide
variety of motor proteins: FoF1 ATPase, bacterial flagellar motors,
helicases, viral double-stranded DNA (dsDNA)-packaging mo-
tors, bacterial chromosome translocases, myosin, kinesin, and dy-
nein. Translocases of dsDNA are used to illustrate how these fea-
tures relate to the motor mechanism in energy conversion,
directional control, and sequential action. Nature has elegantly
evolved a revolution mechanism to avoid coiling and tangling
during lengthy dsDNA genome transportation.

CLASSIFICATION OF BIOMOTORS

Although different biomotors may possess different structures
and have distinct roles in cellular functions, they all need to un-
dergo conformational changes to create motion. Based on their
motion mechanisms, the biomotors are categorized into three
classes: linear, rotary, and revolutional (Fig. 1) (8–16). Rotation is
the circular movement of an object around its own axis, resem-
bling the Earth rotating on its axis in a complete cycle every 24 h.
Revolution is the turning of an object around a second object,
resembling the action of the Earth revolving around the sun one
circle per year (Fig. 1). Many motors assemble into hexamers and
use ATP to trigger their conformational changes. Typical linear
motors are myosin, kinesin, and dynein (17–19), typical rotation
motors are FoF1 ATP synthase, helicases, and the bacterial flagellar
motor (9, 20–24), and typical revolution motors are genomic
dsDNA translocases for bacterial chromosome segregation and
viral dsDNA packaging (12, 25). The representatives in the last
category include the dsDNA translocases FtsK of Escherichia coli
and SpoIIIE of Bacillus and the dsDNA-packaging motors of bac-
teriophages phi29, T3, T4, T7, P22, lambda, and SPP1 and the
large animal dsDNA viruses (26).

Rotation Motors

FoF1 ATP synthase, helicases, and bacteria flagella are common
representatives of rotation motors (20, 21, 27). Besides the flagel-
lar motor, which is more intricate, many of these rotary ATPases
are assembled into hexamers. Although many other nucleic acid-
tracking ATPases are present in different oligomeric forms such as
monomer and dimer, for those hexameric rotation motors that
track along nucleic acids, most, if not all, rotate along nucleic acids
with one strand of DNA or RNA passing through the channel.
Most rotation dsDNA translocases share mechanisms that are dis-
tinct from those of the revolution dsDNA translocases. These ro-
tation nanomotors include, but are not limited to, helicases (27–
29), RNA polymerase (30), transcription termination factors (31),
and others that participate in DNA recombination, repair, and
Holliday junction resolution. Some RecA family ATPase mono-
mers or dimers can assemble onto DNA as a filament (32, 33);
whether the functional unit in the complex is a hexamer with a
helical “open-washer” structure remains to be confirmed.

FoF1 complex. FoF1 ATP synthase is found in the inner mem-
branes of mitochondria, the thylakoid membranes of chloro-
plasts, and the plasma membranes of bacteria (34, 35) and is re-
sponsible for ATP generation. This enzyme is composed of two
rotary motors, Fo and F1. F1 is a membrane-protruding part and
the catalytic domain of the ATP synthase. When isolated from the
membrane, F1 acts as a rotary motor fueled by ATP hydrolysis. Fo

is the membrane-spanning part of ATP synthase and conducts the
proton translocation across the membrane down membrane po-
tential. Upon proton translocation, Fo rotates the ring-shaped ro-
tor against the stator complex composed of the a and b subunits
(Fig. 2). Fo and F1 are connected by a common rotor axle and a
peripheral stalk (Fig. 2 and 3). These connections allow intercon-
version of proton motive force (PMF) and free energy of ATP
hydrolysis via mechanical rotation of the subunit complex (20).

Bacterial flagella. Different species of bacteria use different mo-
tion methods in order to locate optimal growth conditions or avoid
toxic substances. Most motile bacteria are driven by the rotation of
flagellar filaments displaying a stiff helical structure approximately 10
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�m in length and 20 �m in diameter. Each filament has its own
individual rotation motor at its base (21, 36). These motors can rotate
clockwise to produce forward movement or counterclockwise, re-
sulting in tumbling and the change of direction. The flagellar motor is
powered by a proton motive force. Many models, such as the “elec-
trostatic proton turbine” model and the “turnstile” model, have been
proposed to explain flagellar motor function (36, 37).

RNA polymerase. The RNA polymerases are essential enzymes
for the process of transcription. The RNA polymerase reads the
DNA strand and transcribes it into RNA sequence. During this
process, RNA polymerase rotates DNA through its channel; DNA
rotation has been identified by direct observation by real-time
optical microscopy measurements (38).

DNA helicase. Nucleic acid helicases comprise a class of enzymes
that convert chemical energy into mechanical work for unidirectional
translocation along nucleic acids and separate the nucleic acid du-
plexes into transient single-stranded intermediates (39–42). Heli-
cases are involved in many cellular processes, including DNA repair,
replication, and recombination and RNA transcription, remodeling,
splicing, and translation (39–42). There are numerous ways to classify
nucleic acid helicases. Based on their sequence, helicases are divided
into six main groups, SF1 to SF6 (40). The cores of SF1 and SF2
enzymes are structurally similar to each other (40). The most well
studied SF3 helicase is the papillomavirus E1 helicase, and the most
well studied SF4 helicase is T7 gp4 helicase (40). SF5 contains the
bacterial Rho factor (40), which is an ATP-dependent hexameric
RNA helicase involved in the termination of transcription in bacteria.
SF6 contains some of the AAA�-like proteins, including the MCM
proteins as well as RuvB (40).

Revolution Motors

DNA-packaging motor of dsDNA bacteriophages. Packaging of
a viral or bacteriophage genome into its capsid requires extensive

translocation of the nucleic acid. The motor proteins employed by
many DNA viruses and phages belong to the FtsK-HerA family of
translocases (43, 44). DNA-packaging motors of dsDNA bacterio-
phages have been historically classified as rotation motors, while
extensive investigations have revealed that none of the motor
components rotate during active motor actions (Fig. 4) (3–5).
Connector rotation has been excluded in both the phi29 motor, by
using single-molecule force spectroscopy in combination with
single-molecule fluorescence polarization spectroscopy (4), and
the T4 motor, by tethering its connector in a packaging assay (3,
45) (Fig. 4). In addition, tethering of DNA ends to bead clusters
showed active DNA translocation with no observation of the ro-
tation of the beads (5, 7). DNA was found to twist by as little as 1.5
degrees per base pair translocated, confirming a nonrotation
mechanism (6), since 1.5°/bp � 10.5 bp/helical turn � 15.7° is far
below the 360° per complete helical turn. This puzzle of “rotation
motors that do not rotate” was not solved until the breakthrough
of the discovery of revolution motion in 2013 by Guo’s group
(12–16) (Fig. 5). Recent studies in bacteriophages suggested that
the small twisting of the DNA is due to the conformational
changes of DNA between the A form and the B form (46–48) and
also to the conformational changes of the motor channel (49, 50).
Such motors translocate DNA along the helix through unidirec-
tional revolution, resulting in a thermodynamic edge over rota-
tion motors involving dsDNA translocation.

The revolution motion was first described in the well-studied
phi29 dsDNA-packaging motor (12). Viral dsDNA-packaging mo-
tors consist of a protein portal channel and two packaging compo-
nents for packaging the genome into the procapsid (Fig. 6). The
phi29 motor contains a dodecameric connector channel (51,
52), a hexameric packaging RNA ring (7, 53–55), and an AT-
Pase gp16 hexameric ring (56, 57) (Fig. 6). Many of the dsDNA

FIG 1 Illustration of different categories of motors. (A) Linear motors are like people walking (PDB code 3KIN). (B) Rotation motors are like a wheel and like
Earth rotating on its own axis. (Adapted from reference 50.) (C) Revolution motors resemble Earth revolving around the sun without self-rotation. (Adapted
from reference 14 with permission from Elsevier.)
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viruses known so far use similar mechanisms during replica-
tion for their genome translocation into the procapsid (58–60).
More-detailed descriptions and explanations about the motor
structure characteristics and motion mechanisms are given in
the sections below.

With inspiration from the revolution motion found in the
phi29 dsDNA-packaging motor, studies in the other dsDNA mo-
tors were carried out, and it was found that the revolution mech-
anism is a common feature shared by dsDNA-packaging motors,
as evidenced by the results from both crystal structure and bio-
chemical studies. Crystal structure analysis of the motor channels
of SPP1 (61), T7 (62), HK97 (63), P22 (64), and phi29 (52) re-
vealed the existence of an antichiral arrangement between their
channel subunits and the dsDNA helices. In addition, the pack-
aged genome in many viruses has been found to spool free from
rotation tangles inside the capsid (65–69). In phi29, the toroid of
dsDNA has been shown by cryo-electron microscopy (cryo-EM)
around the portal region (Fig. 7) (70–73), representing the accu-
mulation of individual revolving DNAs processed by cryo-EM
during revolution motion. A compression mechanism has also
been found in the T4 DNA-packaging motor (47, 48), which
agrees with the revolution mechanism. Overall, the lack of rota-
tion of the DNA during packaging allows tight, ordered packaging
of the DNA with little or no knotting or tangling, which as such
does not impair subsequent DNA injection steps.

FIG 2 Structures of FoF1 ATP synthase and the �3	3
 subcomplex of F1. (A)
Reconstituted structure of FoF1 ATP synthase from crystal structures of iso-
lated subunit or subcomplexes: a3b3
ε subcomplex (PDB code 3OAA), �
(PDB code 1ABV), b dimer (PDB codes 1B9U, 2KHK, and 1L2P), c ring (PDB
code 3UD0), and putative structure of the a subunit (PDB code 1C17). Green
parts represent the stator complex, including the peripheral stalk (�-b2 sub-
complex) that holds the a3b3 stator ring of F1 and ab2 stator of Fo. Brown parts
represent the rotor complex (
ε– c-ring subcomplex). (B) Fo and F1 (Fig. 1A),
both viewed from the top. (C) Original crystal structure of F1 from bovine
mitochondria (PDB code 1BMF). Sphere representations of the �, 	, and 

subunits are shown in yellow, green, and red, respectively. Each 	 subunit
carries either AMP-PNP, ADP, or neither and is designated 	ATP, 	ADP, or
	Empty, respectively. (D) Conformational states of 3 	 subunits viewed from
the side. �-	 pairs are shown in green and yellow with the central 
 subunit in
red. � and 	 subunits are composed of the N-terminal domain, nucleotide
binding domain, and C-terminal domain (from bottom to top). 	Empty has an
open conformation in which the �-helical C-terminal domain rotates upward,
opening the cleft of the nucleotide binding pocket. Both 	ATP and 	ADP have a
closed conformation entrapping the nucleotide within the closed pocket. All �
subunits represent the open conformation.

FIG 3 Structure of Fo. (A) Crystal structure of the c11 ring of Na�-transport-
ing Fo from Ilyobacter tartaricus (PDB code 1YCE). The blue spheres in the
middle of the c11 ring represent bound Na� ions. The stator ab2 complex is
shown in the schematic drawing. The a subunit has 2 hemichannels, each open
to the periplasmic space or the cytoplasmic space. A proton transferring be-
tween the a and c subunits accompanies the rotation of the c ring. Two c-sub-
unit monomers at the interface of the a subunit are shown in red and green,
respectively. (B) “Ion-locked” conformation of cGlu62 (yellow sphere repre-
sentation) in the crystal structure of the H�-transporting c15 ring from Spir-
ulina platensis (PDB code 2WIE). (C) “Ion-unlocked” conformation of cGlu59
(yellow sphere representation) in the crystal structure of the H�-transporting
c10 ring from yeast mitochondria (PDB code 3U2F).
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dsDNA translocase FtsK/SpoIII E superfamily for bacterial
chromosome segregation. Members of the FtsK/SpoIIIE family
of proteins are hexameric dsDNA translocases found in many bac-
terial species that also use a revolution mechanism for DNA trans-
location (Fig. 8). FtsK/SpoIIIE are part of the larger FtsK-HerA
family, which is present throughout bacteria and archaea (43),
and also contains the motor proteins of various conjugative plas-
mids and transposons. Based on a core with a RecA-like fold, this
family has some added features that set it apart from other RecA-
like proteins (43). FtsK is a dsDNA motor protein involved in the
transportation of DNA and separation of intertwined chromo-
somes during cell division (74, 75). It functions to coordinate
chromosome segregation, unlinking and recombining during cell
division so that the closing division septum is free from DNA (76).
It is one of the fastest and most powerful motors discovered to
date, with a translocation speed of 17.5 kbp/s at 37°C (77) and a
stalling force of 60 pN (78). The FtsK motor contains three func-
tional components: one for DNA translocation, one for orienting
the motor, and one for anchoring itself to the bacterial membrane
(Fig. 9) (79). The DNA translocation motor is at the C terminus of
FtsK and can be subdivided into three domains, �, 	, and 
 (80).
While the � subdomain fold is unique to the FtsK family, the 	
subdomain, which contains residues for binding and hydrolyzing
ATP, classifies FtsK as both a P-loop nucleoside triphosphatase
(NTPase) and a hexameric translocase/helicase due to its RecA-
like fold and sequence conservation common in these families
(43). The third subdomain, 
, has two distinct roles: it acts as a
protein-protein interaction domain to activate Xer-mediated re-
combination at dif (81) and also acts as a DNA binding domain to
recognize and bind to specific 8-bp DNA sequences on the chro-

FIG 4 Experiment with the phi29 and T4 motors revealing that neither connector
nor dsDNA rotation is required for active DNA packaging. (A) Direct observation
of DNA packaging horizontally using a dsDNA with its end linked to a cluster of
magnetic beads for stretching the DNA. Panels a and b, real-time sequential images
of DNA-magnetic bead complexes. (Adapted from reference 50 and reprinted
from reference 5 with permission from AIP Publishing LLC.) (B) Experiment
revealing that the T4 motor connector does not rotate during packaging. The
packaging activity is not inhibited with the N terminus of the motor connector
protein fused and tethered to its protease immune binding site on the capsid. GFP,
green fluorescent protein; ESP, empty small particle; ELP, empty large particle;
HOC, highly antigenic outer capsid protein. (Adapted from reference 16 and
adapted from reference 3 with permission from John Wiley and Sons.)

FIG 5 Schematic showing the sequential revolution motion in translocating dsDNA. (A) Revolution of dsDNA inside the ATPase hexameric ring. (Adapted from
reference 12.) (B) Diagram of cryo-EM results showing offset of dsDNA in the channel of the bacteriophage T7 DNA-packaging motor. The dsDNA did not
appear in the center of the channel; instead, the dsDNA tilted toward the wall of the motor channel. (Adapted from reference 131 with permission of the
publisher.) (C) Revolution of dsDNA along the 12 subunits of the connector channel. (Adapted from reference 12.)
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mosome. FtsK-orienting polarized sequences (KOPS), with the
sequence GGGNAGGG (82, 83), are highly skewed in their distri-
bution so that on each chromosome arm the sequences are di-
rected toward the terminus region, specifically switching orienta-
tion at the dif site. The role of these polarized sequences is to
“determine” the directionality of translocation by acting as a rec-
ognition/preferential loading site for FtsK. Three 
 domains bind
to each 8-bp KOPS (Fig. 9C), leading to loading of an active hexa-

meric motor to one side of the KOPS (84) (Fig. 10). This ensures
that the motor is loaded correctly onto DNA in a specific orienta-
tion and that the subsequent translocation is toward the Xe-
rCD-dif site. Directional translocation of DNA is, therefore,
sequence dependent at the motor-loading step; further, a
translocating FtsK appears to ignore additional KOPS and
reads through them (77, 84).

SpoIIIE is an FtsK orthologue in B. subtilis that is vital for
sporulation (85). Like FtsK, SpoIIIE shares a conserved C-termi-
nal domain that harbors three subdomains, �, 	, and 
 (86, 87).
The � and 	 subdomains translocate DNA through ATP binding
and DNA-dependent hydrolysis (88), and the 
 subdomain rec-
ognizes specific DNA sequences to guide DNA translocation (84,
89). These subdomains assemble into a hexameric ring that ac-
commodates dsDNA in its central channel (80). During spore
formation, an asymmetric cell division occurs, and a complete
chromosome copy is pumped into the smaller spore compartment
from a larger “mother cell” using the ATPase-driven motor of
SpoIIIE (85, 90). Recent reports proposed that SpoIIIE motors
also use a revolution mechanism for DNA translocation (50).
Whether FtsK and SpoIIIE in fact respond to their respective di-
rectionality sequences differently or whether the two related pro-
teins behave in a similar fashion remains to be studied.

DNA-packaging motors of large eukaryotic dsDNA viruses.
Comparative genomic studies of large eukaryotic dsDNA viruses,
including mimivirus, vaccinia virus, and pandoravirus, showed
remarkable similarity between their motor components and those
of the FtsK-HerA superfamily (43, 44, 91), indicating that these
viruses might also undergo revolution motion during genome
packaging, allowing translocation of large genomes with minimal
rotation of the DNA.

Linear Motors: Myosin, Kinesin, and Dynein

Myosin, kinesin, and dynein are linearly acting cytoskeletal motors.
They are able to work in ensembles to generate large forces, such as
during muscle contraction, or as single molecules to transport cargo

FIG 6 Depiction of the structure and function of the phi29 DNA-packaging
motor. (A) Side view of phi29 dsDNA-packaging motor (left) and top view of
phi29 connector (right). (B) Hexameric pRNA generated from crystal structures
of its 3WJ core and AFM images of loop-extended hexameric pRNA. (C) DNA
revolving inside the connector channel by contact with each connector subunit in
a 30° transition step for each contact. (Adapted from references 13 and 56.)

FIG 7 Examples of spooling of DNA within capsids of phages to support the revolution mechanism. (A) Bacteriophage phi29. (Adapted from reference 71 with
permission from Elsevier.) (B) Bacteriophage P22. (Adapted from reference 65 with permission from AAAS.) (C) Bacteriophage T7. (Adapted from reference 69
and adapted from reference 72 with permission from the American Society for Biochemistry and Molecular Biology.) The toroid formed at the phi29 portal
position might be an accumulation of the images of the revolution motion during packaging, as shown in the image in the center. (Adapted from reference 15 with
permission from Elsevier.)
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along a specific cellular track. While myosins utilize actin filaments as
tracks, kinesin and dynein are microtubule-based motors. The cyto-
skeletal motors are large protein families that are ubiquitously ex-
pressed in eukaryotic cells and are organized into classes based on
their structure and function. Myosin motors are divided into 35
classes (92), while there are 14 classes of kinesin (93) and 9 classes of
dynein (94). The “Mechanism of Linear Motors” section below fo-
cuses on the myosin mechanism as an example of linear motion,
while the reader is referred to excellent reviews for the kinesin (95)
and dynein (94) mechanisms.

Of the cytoskeletal linear motors, kinesin and myosin are more
structurally related, as their nucleotide binding regions are similar
to those of G proteins and other P-loop ATPases. The key features
of the active site are the conserved switch I, switch II, and P loop
(Walker A motif), which coordinate nucleotide binding and hy-

drolysis and also transmit key structural changes to the force-
generating element of the motor (96) (Fig. 11). The members of
the family of P-loop NTPases, G proteins, kinesins, and myosins
are thought to have evolved from a common ancestor (97). Al-
though the motor domains of the myosin and kinesin families are
highly conserved, the N- and C-terminal domains are quite vari-
able and allow dimerization, filament formation, protein-protein
interactions, cargo binding, and light-chain binding.

Dyneins are members of the AAA� family of ATPases, and
their structure consists of a ring of six AAA� ATPase modules
(94). The first AAA� module is the key site of ATP hydrolysis,
while sites 2 to 4 are also capable of hydrolyzing ATP, and sites 5
and 6 are not capable of hydrolyzing ATP. Dynein also contains a
stalk and microtubule binding domain as well as a cargo binding
tail that extends from the AAA� ring.

STRUCTURE OF BIOMOTORS

Motor Structural Frame

Molecular motors exhibit wide variability in structure, while in gen-
eral the structures consist of a mechanical frame containing both
moving and static parts, along with an energy supply. In most molec-
ular motors, the mechanical frame is formed by proteins, though the
phi29 dsDNA-packaging motor also contains an RNA hexameric
molecule as an essential component (53). The DNA or RNA poly-
merases are track-laying motors, and DNA and RNA can be consid-
ered components of these motors since they are required for the un-
winding or polymerization process (98–101). The structure of the
motor domain, which contains all the elements capable of converting
chemical energy into mechanical work, is also highly conserved
within various classes of motors (102, 103).

Channel, Pore, or Surrounding Ring

During cell segregation or binary fission, circular closed dsDNA
can be translocated by the dsDNA translocases without breaking
the covalently bonded backbones (79, 80, 90). In addition, con-
catemer dsDNA is the packaging substrate in many dsDNA viruses
(104–106). This process can be finished by the dsDNA transloca-
tion motor, since the ATPase monomers can assemble into a hex-
amer on the DNA itself without a free 5= or 3= dsDNA end by
utilizing the energy from ATP binding (50). This has been con-
firmed by electrophoretic mobility shift assay (EMSA), which
showed the binding of ATPase onto single-ended or double-
ended blocked DNA substrate (12), and by single-molecule fluo-
rescent imaging and EM imaging, which showed that the first step
in phi29 DNA packaging was the binding of multiple gp16s in a
queue along the dsDNA, evidenced by the observation of a string
of multiple Cy3-gp16 complexes on dsDNA chains in the presence
of nonhydrolyzable ATP
S (12).

Stoichiometry of Motor Components

Structural studies of viruses in 1978 led to the definition of the
popular 5-fold/6-fold mismatch mechanism (2), based on the
findings that the viral icosahedron capsid is composed of many
pentamers and hexamers (107) and that the DNA-packaging mo-
tor of dsDNA viruses resides within the pentameric vertex (108)
with a dodecameric motor channel (62, 109–113). In 1998, the
pRNA ring in the phi29 dsDNA-packaging motor was first deter-
mined to be a hexamer (54, 114, 115). Despite some researchers
supporting a pentameric model (116–118), the hexameric pRNA

FIG 8 Illustration showing how FtsK may undergo the revolution mecha-
nism. (A) One strand of dsDNA contacts with the inner-channel wall of the
hexameric ATPase. The continuous contact between DNA and ATPase does
not require any rotation of the ATPase or DNA. (B) Each DNA contact is
expected to be separated by 60° along the inner surface of the ATPase hexam-
eric channel. (C) Sequential action of dsDNA translocation. DNA is shown as
a line. T, ATP-bound; D, ADP-bound. (Adapted from reference 25 with per-
mission of John Wiley and Sons [copyright 2010 WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim].) (D) Speculation on the segregation and transloca-
tion of the mimivirus genome into the capsid via a revolution mechanism
similar to that for FtsK. (Adapted from reference 15 with permission from
Elsevier.)
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formation was verified by cryo-electron microscopy (cryo-EM)
(119), biochemical analysis (54, 114, 115), single-molecule pho-
tobleaching (7), gold labeling imaging by EM (120, 121), and RNA
crystal structure studies (55). In fact, all six copies of pRNA were
found to be retained on the active motor during packaging (7)
(Fig. 12). Retention of six copies of pRNA upon packaging appears
to dismiss the assumption that the motor components change
from hexamers to pentamers (118, 122, 123). More recently, the
ATPase gp16 of the phi29 dsDNA-packaging motor, which be-
longs to the ASCE superfamily, which has many hexameric mem-
bers (124–126), has also been confirmed to be a hexamer in its
final oligomeric state (Fig. 13) (56). Experimental evidence in-
cludes that from binomial distribution analysis, qualitative DNA
binding assays, capillary electrophoresis (CE) assays, and EMSA
(56, 127, 128). In addition, the description of biophysical studies
identifying the four steps of motor motion (Fig. 14A) is related to
the four relaying lysine layers embedded inside the phi29 connec-
tor channel inner wall (Fig. 14B and C) (see below) (13, 117, 129).

Assembly of a hexamer appears to be crucial to the motor func-
tion, as demonstrated by the ATPase function of the FtsK (and
SpoIIIE) DNA motors. The � and 	 domains hexamerize to form
the DNA translocase motor, a ring-shaped multimer with a cen-

FIG 9 The FtsK motor protein. (A) E. coli FtsK protein domain structure. The N-terminal domain is in red, with each transmembrane domain represented by
a black box. The numbers represent the FtsK amino acid numbers. The C terminus is subdivided into �, 	, and 
 domains. (B) Two views of the hexameric FtsK
motor protein structure. On the left is a side on view emphasizing the � and 	 domains. Bound nucleotide (ADP) is shown in black in a space-filling model. On
the right is a view down the symmetry axis, viewed from the 	-domain side. (C) Structure of three 
 domains bound to a KOPS DNA, seen along the DNA axis
(left) and from the side (right).

FIG 10 Model of the FtsK motor loaded at a KOPS site. The N termini of the

 domains are located on one side of the complex, where they would connect
to the motor domains of FtsK. This leads to loading of the motor to one side of
the KOPS site so that the motor is pointing in a defined direction. This gives the
motor its subsequent directional translocation (the arrow denotes the direc-
tion the motor would move along the DNA).
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tral channel through which the dsDNA substrate is threaded (80).
Electron microscopy (EM) of FtsK(C) has revealed DNA-depen-
dent hexamer formation and DNA passage through the hexameric
ring. For the � and 	 domains, each forms a hexameric ring, and
the two rings sit atop one another with an �10-Å cleft separating
them and two strands connecting the rings (Fig. 9B).

Factors for Distinction of Revolution and Rotation Motors
Differentiation of the rotation motor from the revolution motor is
challenging, especially as the dsDNA translocation motors involve
both rotation and revolution motors. Below we introduce two
simple ways to distinguish these two types of motors.

Chirality: left-handed for revolution motor and right-handed
for rotation motor. Chirality is one criterion to distinguish revo-
lution motors from rotation motors. The motor channels (con-
nectors) of SPP1 (61), T7 (62), HK97, P22 (64), and phi29 (52) all
adopt an antichiral arrangement between the left-handed motor
connector subunits and the right-handed DNA helices during
packaging (Fig. 15) (12, 13). No apparent homology among these
portal proteins has been shown by sequence alignment. However,
they all share very similar three-dimensional structures, particu-
larly a sequence of �-	-�-	-	-� stretches. The final �-helices of
this structurally conserved stretch line the inside of the channel
and are tilted at a 30° (left-handed) angle to the channel axis (Fig.
16). This remarkable conservation suggests a critical role of this
conserved 30° antichiral arrangement in dsDNA packaging (50).
The antichiral structure greatly facilitates the controlled one-way mo-
tion of dsDNA during packaging of the viral genome. As the DNA
revolves around the inside of the channel, there is no rotation, coiling,
or torsion force from the contact with any of the 12 connector sub-
units (12). On the other hand, rotation motors use right-handed
channels for right-handed dsDNA translocation as a parallel thread.

Channel size: larger than 3 nm for revolution motor and
smaller than 2 nm for rotation motor. Hexameric rotation mo-
tors mostly process one of the nucleic acid strands that is threaded

FIG 11 Simplified schematic representation of the ATPase cycle of myosin, showing the proposed mechanism of how the motor is primed (recovery stroke) and
generates force (power stroke) by coupling movement of the lever to key steps in the ATPase cycle. (Reprinted from reference 236 with permission.)

FIG 12 Single-molecule photobleaching assay confirming the presence of six
copies of phi29 motor pRNA. (A) pRNA dimer design constructed with Cy3-
and Cy5-pRNA. (B) Comparison of empirical photobleaching steps with the-
oretical prediction of Cy3-pRNA in procapsids bound with dually labeled
dimers. (C) Photobleaching steps for procapsids reconstituted with the dimer.
(Adapted from reference 7 with permission of the publisher [copyright 2007
European Molecular Biology Organization].)
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through the central channel of the motor, while the other is ex-
cluded during translocation (130). Rotation motors adopt a chan-
nel with close to full contact with nucleic acid during the translo-
cation through the center of the channel, and as a result, the
channel size has to be close to or smaller than the diameter of one
strand of dsDNA, which is smaller than 2 nm. However, for rev-
olution motors, both strands of the dsDNA advance within the
channel through its contact with the channel wall from the side
instead of proceeding through the center of the channel. This is in
agreement with the cryo-EM images showing that the T7 dsDNA
core tilts relative to its channel axis. A counterclockwise motion of
the dsDNA in the T7 motor was observed when viewing from the
N terminus of T7 connector (131) (Fig. 5B), in agreement with the
direction of dsDNA revolution in the phi29 dsDNA-packaging
motor (12, 13, 60, 132) (Fig. 5A). The revolution motor channels
are thus larger than the dsDNA in order for there to be sufficient
room for revolution. Crystal structures of different motors have
confirmed the channel sizes, confirming that the diameters of the
revolution motor channels are larger than 3 nm while those of the
rotation motors are smaller than 2 nm (50). This appears to be
true for the revolution motors of phi29, SPP1, T4, T7, HK97, and
FtsK and rotation motors including Rho factor, E1 helicase, TrwB,
ssoMCM, and RepA (50) (Fig. 17).

MOTION MECHANISM

Energy Conversion: Transition among Entropy, Randomness,
Affinity, and Conformation Change as Driving Force

Several assays were used to study the ATP-ATPase interaction and
elucidate how ATP energy translates to physical motion in phi29

DNA packaging. EMSA suggests that the ATPase undergoes con-
formational entropy changes upon ATP binding or ATP hydroly-
sis, leading to a high or low binding affinity of ATPase toward
DNA, respectively (12, 56, 133). These changes in ATPase force
the substrate DNA away from the ATPase and lead to physical
motion of genomic DNA toward the second subunit, thereby
moving the DNA toward the interior of the viral protein shell (Fig.
18). Six ATP molecules are used to complete one revolution cycle,
with one ATP molecule to package 1.75 bp of dsDNA (10.5 bp/
6ATP � 1.75 bp/ATP). Such conformational changes are abol-
ished by site-directed mutation to the Walker A motif (56), which
has been identified (57) and confirmed (12, 57, 134) to be respon-
sible for ATP binding. Mutation to the gp16 Walker B motif,
which is required for ATP hydrolysis, eliminates the catalytic force
step (56). Thus, the conformational entropy change of the ATPase
is a process that couples motion with the free energy changes and,
most likely, an intrinsic property of the protein through evolution.

The P-loop lysine, catalytic glutamic acid, and arginine finger
are well known to be critical to retain the catalytic power of
ATPases. The P-loop lysine is the lysine in the phosphate binding
loop (P loop), which is highly conserved among NTPases, with the
general sequence GXXXXGKT/S. The glutamic acid, thought to
be a general base for activating the hydrolysis of ATP, is also well
conserved among ATPases and interacts with the ATP 
 phos-
phate via a water molecule. The glutamic acid general base has
been thought to activate the intervening water molecule to induce
nucleophilic attack of the water molecule on the 
 phosphate.
Recent quantum chemical calculation and single-molecule analy-
sis revealed that the role of general base may be not water activa-
tion but the enhancement of proton transfer from phosphoester
to bulk solution (135). In some ATPases the glutamic acid also
plays a role as a sensor for the ATP binding state and changes

FIG 13 Stoichiometric assays showing the formation of the phi29 ATPase hex-
amer. (A) A native gel reveals six oligomeric states of the ATPase; the hexamer
formation increases as the concentration of protein is increased. (B) A slab gel
showing the binding of ATPase to dsDNA in a 6:1 ratio, imaged in GFP (upper
panel) and Cy3 (lower panel) channels for ATPase and dsDNA, respectively. (C)
Quantification by varying the [ATPase]/[DNA] molar ratio. The concentration of
bound DNA plateaus at a molar ratio of 6:1. (Adapted from reference 56.)

FIG 14 Four steps of pauses for each cycle during the packaging of phi29
dsDNA. (A) The presence of four lysine residues of motor channel protein
leads to the formation of four positively charged rings within the negatively
charged channels of different motors. (Adapted from reference 13 and adapted
from reference 15 with permission from Elsevier.) (B) Diagram showing DNA
revolution inside the phi29 connector channel with four steps of pauses due to
the interaction of four positively charged lysine rings with the negatively
charged dsDNA phosphate backbone. DNA revolution across the 12 connec-
tor channel subunits is shown. (Adapted from reference 15 with permission
from Elsevier.) PDB codes: phi29 gp10, 1H5W; SPP1 gp6, 2JES; P22 gp1, 3LJ5.
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orientation drastically upon ATP binding (136). The arginine fin-
ger is highly conserved among G proteins, AAA proteins, and
RecA-type ATPases. The arginine finger is located at an interface
of nucleotide binding subunits; ATP binds the interface of two
subunits, one of which possesses most of ATP binding residues
while the other provides the arginine finger. The crystal structure
of bovine mitochondrial F1 (MF1) with a chemical analogue of the

 phosphate suggests that the arginine finger stabilizes the tran-
sient state of the hydrolysis reaction, which was supported by bio-
chemical (137), theoretical (138), and single-molecule (139) stud-
ies. The AAA� family also contains another arginine, in a location
structurally separate from the arginine finger, that acts to couple
ATP binding and hydrolysis to conformational changes between
subunits; this has been termed the sensor II motif (140, 141). This
well-conserved core of catalytic residues both helps to hydrolyze
nucleotides efficiently to provide power for the motor to work and
allows the motor to couple ATP binding and hydrolysis to com-
munication between subunits to allow either more complex mo-
tions or cooperative motion within multisubunit enzymes.

Mechanism of Rotation Motors

Step rotation of F1. Rotation of the isolated F1 motor driven by
ATP hydrolysis has been directly observed with an optical micro-
scope (35, 142). Unidirectional rotation was first visualized for F1

from Bacillus sp. strain PS3 and has subsequently been observed in
several kinds of rotary ATPases: the F1 proteins from Escherichia
coli (143), spinach chloroplasts (143), and human mitochondria
(144), as well as V-ATPases from Thermus thermophilus (145) and
Enterococcus hirae (146). Among these, F1 from Bacillus PS3,
termed TF1 (thermophilic F1), is the best characterized in terms of
rotary dynamics. Therefore, the rotation features of F1 introduced
here are based on the findings in the single-molecule rotation
assay of TF1 unless otherwise mentioned. Consistent with the
pseudo-3-fold symmetry of the �3	3 stator ring, F1 rotates 
 in
discrete 120° steps (147), each coupled with a single turnover of
ATP hydrolysis (147, 148). An intermediate state has also been
observed after ATP binding, with an 80° degree angle from the
ATP waiting angle before hydrolysis (149). Thus, each 120° step
can be resolved into 80° and 40° substeps (Fig. 19). A recent reac-
tion scheme suggests that the 80° substep is driven by ATP binding
and that the ADP release occurs on different 	 subunits. The 40°

substep is initiated after hydrolysis of bound ATP, and Pi release
also occurs on different 	 subunits (150) (Fig. 19C).

Single-molecule rotation assay of F1. The dynamic behavior of
ATP-driven rotation of F1 is well characterized in single-molecule
rotation assay where the �3	3 stator ring is immobilized on a
coverslip and the rotation probe is attached to the outwardly pro-
truding part of the 
 subunit of F1 (Fig. 19A). In earlier studies, a
fluorescently labeled actin filament (0.5 to 5.0 m) was used (142,
147). In recent studies, nanoparticles with high scattering coeffi-
cients are often used, such as polystyrene beads (151), gold nanocol-
loids (151), and nanorods (152, 153), which enable imaging with high
spatiotemporal resolution. In order to manipulate the rotation of F1,
submicrometer-size magnetic beads are attached on the 
 subunit as
a rotation probe as well as a handle to control the orientation of the 

subunit with magnetic tweezers (148, 154, 155).

Conformational transition of the � subunit. Many lines of
experimental evidence showed that the catalytic 	 subunit under-
goes a large conformational change (156–158). The clearest data
came from the crystal structure of MF1, which showed that the 	
subunit changes conformational state upon nucleotide binding,
rotating the C-terminal helical domain inwardly (156). This con-
formation is termed the closed form. On the other hand, the nu-
cleotide-free 	 subunit assumes an open conformational state.
When nucleotide-free 	 subunit undergoes the open-to-closed
conformational transition upon nucleotide binding, it pushes the

 subunit. Therefore, of the steps of ATP binding, hydrolysis, and
release of ADP and Pi, it is in fact ATP binding that is thought to be
the major torque-generating step. Indeed, a nuclear magnetic res-
onance (NMR) study (157), single-fluorophore imaging (158),
and recent high-speed atomic force microscopy (AFM) (159) con-
firmed that the 	 subunit does undergo the open-to-closed con-
formational transition upon ATP binding, as expected from the
crystal structure of MF1.

It was proposed that hydrogen bond formation between the
phosphate moiety of bound ATP and the catalytic residues is the
main driving force of the induced-fit-type conformational
change: the open-to-closed transition of the 	 subunit. The ac-
companying swing motion of the C-terminal domain of the 	
subunit would push the 
 subunit to induce the rotation (Fig. 20).

PMF-driven rotation of Fo. The most straightforward ap-

FIG 15 Use of channel chirality to distinguish revolution motors from rotation motors. (A) In revolution motors, the right-handed DNA revolves within a
left-handed channel. (B) In rotation motors, the right-handed DNA rotates through a right-handed channel via the parallel thread, with DnaB shown as an
example (130). (Adapted from reference 50.) PDB codes: phi29 gp10, 1H5W; DnaB, 4ESV.
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proach to address the dynamics of c-ring rotation is imaging of
c-ring rotation under proton motive force (PMF)-driven condi-
tions. Pioneering work on this was done by Börsch’s group (160),
where they employed single-molecule Förster resonance energy
transfer (FRET) measurement to visualize c-ring rotation (161).
Donor and acceptor fluorescent dyes were introduced to the a
subunit and one of the c subunits that the stator and rotor sub-
units of EFoF1 reconstituted into liposomes. Under ATP synthesis
conditions, the FRET signal showed multiple states that were at-
tributed to pauses of the c ring every 36°, relating to the 10-fold
symmetry of the c ring from Escherichia coli. Following on from
the work of Börsch’s group, a single-molecule rotation assay of
FoF1 under ATP synthesis conditions was reported (162), where

EFoF1 molecules were reconstituted into a supported membrane
and PMF was charged by uncaging the caged proton between a
coverslip and a supported membrane. In this experiment, EFoF1

molecules showed clear 120° steps, suggesting that the kinetic bot-
tleneck was a catalytic event on F1. These experiments still have a
critical experimental drawback in that the electrochemical poten-
tial is transient and not stable, which prevents elaborated analysis.
Thus, the single-molecule analysis of the rotary dynamics of Fo

still requires technical advancement. One remarkable technical
achievement is the arrayed lipid bilayer chamber (ALBiC) system,
which displays a million femtoliter chambers, each sealed with a
lipid bilayer patch (163). This allows single-molecule measure-
ment of transport activity of membrane proteins such as alpha-
hemolysin and ATP synthase. One advantage of ALBiC system is
hermetic sealing of chambers with lipid bilayers. Such new mem-
brane technology would pave a way to the single-molecule study
of rotary ATPase as well as other membrane protein machines by
combination with single-molecule imaging techniques.

Rotation of helicases. Several mechanisms of helicase translo-
cation along nucleic acid lattices have been proposed. Currently
the most popular models are the “inchworm stepping mecha-
nism” and the “Brownian motor mechanism” (164, 165). Trans-
location begins with one binding site tightly bound to the sub-
strate while the other one is bound weakly to it. “Inching forward”
of the helicase is coupled with the NTP binding and hydrolysis
cycle. Binding and coordination of the NTP-metal ion complex
results in a large conformational change, which closes the cleft
between the two nucleic acid binding sites. NTP hydrolysis and
subsequent release of the NDP and inorganic phosphate are fol-
lowed by the reversal of the conformational change, which results
in the relative movement of the domain (or subunit) containing
leading nucleic acid binding sites. One cycle of action is completed
in six conformational changes. The Brownian mechanism re-
quires only one nucleic acid binding site on the helicase, while two
distinct conformational states, with high or low affinities toward
its substrate depending on the different NTP ligation states, were
proposed. Nucleic acids are translocated by the combination of
Brownian motion and power stroke.

Mechanism of Revolution Motors

One-way traffic of dsDNA-packaging motor. The special struc-
ture of the dsDNA-packaging motor generates several factors that
coordinate a one-way traffic mechanism. As mentioned in the
previous sections, first, ATP binding induces an entropic and con-
formational change of the ATPase giving an affinity for binding
dsDNA. ATP hydrolysis induces a second entropic and conforma-
tional change resulting in a low affinity for dsDNA, thus pushing
dsDNA toward the next subunit of the ATP hexamer. Second, the
30° left-handed twist of the channel wall produces an antiparallel
arrangement between the channel wall and the right-handed helix
of the dsDNA, facilitating the unidirectional translocation. Third,
the one-orientation flow loops within the channel found in SPP1,
phi29, and T4 generate a vector force for the one-way trafficking of
dsDNA (Fig. 21); a mutant phi29 connector with a deletion of the
internal loop N229-N246 failed to produce any virions (49, 166–168).
The single-channel conductance assay has shown a one-way prop-
erty for the wild-type connector (13, 132) and a two-way property
for the loop-deleted connector (Fig. 21) (13, 169). These results
suggest that the channel loops act as a ratchet during DNA trans-
location to prevent the DNA from leaving, in line with the “push-

FIG 16 Quaternary structures showing the presence of the left-handed 30°
tilting of the connector channels of different bacteriophages. External (A) and
cross-sectional (B) views of the motor are shown, showing the antiparallel
configuration between the left-handed connector subunits and the right-
handed dsDNA helices. The 30° tilt of the helix (highlighted) relative to the
vertical axis of the channel can be seen in a cross-sectional internal view of the
connector channel and the view of its single subunit in panel B. (Adapted from
reference 50 and adapted from reference 15 with permission from Elsevier.)
PDB codes: phi29 gp10, 1H5W; HK97 family portal protein, 3KDR; SPP1 gp6,
2JES; P22 gp1, 3LJ5. T7 gp8 EM code: EMD-1231.
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through one-way valve” model (13, 60, 132, 166). Analysis of the
crystal structure and cryo-EM density map of SPP1 channel loops
reveals that these loops are located in close proximity to dsDNA
via nonionic interactions. The channel loops of phi29 and SPP1
might play similar roles in directional traffic of dsDNA, leading to
entrance into the capsid through the connector channel (170).

The 5=-to-3=mode of revolution of one DNA strand along the
channel wall to generate the vector force agrees with published
data from T4 and phi29. During motor packaging, dsDNA is pro-
cessed by contacting the connector with one strand of DNA in the
5=-to-3= direction (171), and modification of the phi29 genome
DNA in the 5=-to-3= direction strand was found to stop dsDNA
packaging (172) (Fig. 22). Extensions up to around 10 bases at the
end of the DNA can be tolerated; however, extensions to 20 or
more bases significantly blocked the DNA packaging of the phi29
or the T4 motor (Fig. 22) (172, 173).

Additionally, the electropositive lysine layers present in many
phage channels interact with one of the strands of the electroneg-
ative dsDNA phosphate backbone, resulting in a relaying contact
that facilitates one-way motion and the generation of steps of
transitional pausing during dsDNA translocation (12, 13, 116).
The negatively charged phi29 connector interior surface is deco-
rated with 48 lysine residues, resulting in the formation of four
positively charged 12-lysine rings, as revealed by connector crystal
analysis (52) (Fig. 14), which results in uneven speed alternations
during the DNA translocation process, with four pauses (12, 13,

116), as previously reported for both phi29 (116, 129) and T4
(174). The lysine layers are nonessential for DNA packaging, while
the interactions between lysine and the DNA backbone are in-
volved in motor action. Similar patterns of four relaying electro-
positive lysine layers have been found in the SPP1, P22, and phi29
phages (52, 123). The effects of the lysine layers on genome trans-
location can be interpreted from the structural aspects. Taking the
phi29 dsDNA-packaging motor as an example, its four lysine lay-
ers fall vertically within a 3.7-nm range (52) inside the 7-nm con-
nector channel, spaced on average �0.9 nm apart. For B-type
dsDNA, �2.6 bp will advance through each rise between two
lysine layers (0.9 nm/0.34 nm · bp1 � �2.6 bp). For every cycle of
the DNA revolution (360°, 10.5 bp) through the channel of 12
subunits, a 0.875 mismatch occurs between the negative DNA
phosphate base and the channel subunits with the positive lysine
layer (10.5/12 � 0.875). To compensate for the distance variation
due to this mismatch, the dsDNA phosphate backbone will inter-
act with the positively charged lysine in the next subunit, leading
to a slight pause in DNA advancement (Fig. 14). The continuation
of the interactions between lysine layers and DNA backbones leads
to the four pauses during packaging.

dsDNA translocases of the FtsK/SpoIIIE superfamily. The
crystal structure of the hexameric FtsK motor domain from Pseu-
domonas aeruginosa revealed a 6-fold symmetric ring with ADP
bound in the active site of every subunit (80). There was very little
structural information alone that could explain how the protein

FIG 17 Comparison of channel sizes of rotation and revolution motors. (A) Channel sizes of different biomotors that utilize the rotation mechanism (left panel)
and the revolution mechanism (right panel). During DNA translocation, the rotation motors use smaller channels (�2 nm), while revolution motors use larger
channels (�3 nm in diameter). (B) The larger size of revolution motors has also been proved by the single-pore conductance assay with the phi29 connector,
showing the one-way traffic property of the channel with double-stranded or quadruple-stranded DNA. (Adapted from reference 50.) PDB codes: RepA, 1G8Y;
TrwB, 1E9R; ssoMCM, 2VL6; Rho, 3ICE.; E1, 2GXA; T7 gp4D, 1E0J; FtsK, 2IUU; phi29 gp10, 1H5W; HK97 family portal protein, 3KDR; SPP1 gp6, 2JES; P22
gp1, 3LJ5. T7 gp8 EM ID: EMD-1231.
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could convert the chemical energy from ATP hydrolysis into
movement of the DNA substrate. However, the same study also
presented a different crystal form of the motor domain, a mono-
meric form with ATP bound. A comparison of the two structures
showed that when the 	 domains were superimposed, the � do-
mains were shifted relative to each other in a hinge-like opening of
� from 	. The point in the � domain juxtaposed to the DNA
substrate was able to move by 5.5 Å by this hinge-like mechanism
(equivalent to 1.6 bp). If this movement were correlated to ATP
hydrolysis, it would provide a mechanism by which the protein
could pump DNA. The translocation of dsDNA with 1.6 bp per
subunit of FtsK (25, 80) agrees well with the quantification for the
phi29 DNA-packaging motor that each ATPase subunit uses one
ATP to package 1.75 nucleotides (12, 13, 16, 56, 57) and for the
bacteriophage T3 system with 1.8 bp per ATP (175). Based on
these data, an inchworm mechanism has been proposed for FtsK
(25, 80), with ATPase subunits acting in a sequential manner. In
the model proposed by Massey et al. (80), for each ATP hydro-
lyzed, the DNA moves 2 bp (�6.8 Å, slightly larger than the 5.5-Å
difference between the two crystal forms) in an inchworm-like
movement with contacts between both the � and 	 domains and
the central DNA. The relative strength of the interaction between
each domain and the DNA is dependent upon the ATP binding or
hydrolysis state; upon hydrolysis of ATP, one DNA contact is lost
while the other contact is strong but is shifted by �6.8 Å, resulting
in net movement of DNA along the central channel of 2 bp. An
integer number of bases was chosen, as it allows each monomer in
the ring to contact the dsDNA in the same manner at every sub-
unit, whether this is contact with the repeating sugar-phosphate
backbone or with the bases themselves. Movement by a noninte-
ger number of bases would mean that the protein-DNA contact

necessary for movement of the substrate would be different in any
two adjacent subunits. The movement of dsDNA by one subunit
also functions to bring the next FtsK monomer in the ring to
register with the DNA, and as such it hands the DNA substrate on
to the adjacent monomer with minimal rotation (Fig. 8B). This
second subunit then also translocates 2 bp of DNA upon hydro-
lyzing ATP, passing the DNA onto the next monomer, and so on
around the ring. The result is 12 bp of DNA translocated per
catalytic cycle of the hexamer if all 6 monomers hydrolyze ATP
once. This figure is close to the 10.5 bp per helical turn in B-form
DNA, with the extra 1.5 bp being manifested as a slight twisting. If
the protein is anchored (both FtsK and SpoIIIE are membrane
bound at their N termini), then this results in generation of DNA
supercoiling, positive ahead of the motor and negative behind.
Indeed, induction of supercoiling has been seen in bulk biochem-
ical assays (176) and in single-molecule experiments (177). The
observed supercoiling induction for FtsK translocation of one
positive supercoil ahead of the motor per 150 bp translocated is in
broad agreement with the proposed rotary inchworm model.

The inchworm model also proposed an obligatory handoff
event between adjacent monomers within a single ring, such that
the presence of a single catalytically inactive subunit would effec-
tively inactivate the entire hexamer (80). This was supported by
biochemical data. Mutants which were unable to bind ATP were
mixed in different ratios with wild-type subunits, and the relative
ATPase activity was compared to that of hexamers consisting of
only wild-type subunits. With increasing proportions of mutant
subunits, the ATPase activity decreased rapidly, following the pre-
dicted pattern for poisoning of the hexamer by an inactive sub-
unit. This agrees with the finding that incorporation of one inac-

FIG 18 Model of the sequential mechanism of the sequence action of the phi29 DNA-packaging motor. Binding of ATP to the conformationally disordered
ATPase subunit stimulates an entropic and conformational change of the ATPase, thus fastening the ATPase at a less random configuration. This lower-entropy
conformation enables the ATPase subunit to bind dsDNA and prime ATP hydrolysis. ATP hydrolysis triggers the second entropic and conformational change,
which renders the ATPase low affinity for dsDNA, thus pushing the DNA to the next subunit that has already bound ATP. These sequential actions promote the
movement and revolution of the dsDNA around the hexameric ATPase ring. (Adapted from reference 50 and adapted from reference 15 with permission from
Elsevier.)
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tive subunit of the phage phi29 DNA-packaging motor completely
blocks the function of the ATPase ring (12, 13, 15, 56).

Interestingly, a fusion protein in which three motor domains
were joined to each other in a single polypeptide, a covalent trimer
of FtsK, has been produced (178). This construct was found to be
a very active DNA translocase motor. Within this trimeric con-
struct, the Walker A and Walker B motifs, for nucleotide binding

and hydrolysis, respectively, were selectively mutated. This design
led to the surprising finding that a single active-site mutant or two
nonadjacent mutants per hexamer did not cause a great decrease
in ATPase activity and did not significantly decrease the speed of
translocation along dsDNA (178). However, the presence of these
mutations did reduce the ability of the hexamer to produce force
as judged by the ability of the protein to displace either protein or
DNA triplexes. It is important to consider that when the ATPase
subunits were fused into a concatemer, there might have been
unknown and unintended alterations either to the ATPase activity
of individual monomers or to their ability to form higher-order
multimers, which could mask the effect of mutant subunits. Con-
versely, a number of single-molecule studies have now shown that
the linked trimeric FtsK proteins appear to translocate and re-
spond to nucleotides similarly to unlinked hexamers (77, 179).
Nevertheless, in order to explain these results, a new model in
which more than one subunit within a hexameric ring would con-
tact DNA concurrently was proposed. This model was based upon
the escort or “spiral staircase” model of Rho and E1 helicases (27,
180). In these hexameric helicases, multiple subunits can contact
the DNA/RNA substrate at the same time, with the single contact
point for each monomer being at a different level around the ring,
rather like the stairs in a spiral staircase. ATP hydrolysis moves one
of the contact points downwards through the ring forcefully, and
the other contacts move along passively. When the last contact
point at the bottom of the ring is reached, the protein arm be-
comes free and can then move back up the top to reengage with the
polynucleotide substrate and begin the cycle of movement down
the staircase again. With a flexible and compressible single-
stranded DNA/RNA substrate, the movement of the protein-
DNA contacts is small enough that the protein can maintain with
the DNA/RNA through a full catalytic cycle of every subunit in the
ring. However, dsDNA is a much stiffer and noncompressible
substrate than single-stranded DNA (ssDNA) or RNA, and as such
a DNA translocase would have immense trouble utilizing an iden-
tical mechanism; the stiffer dsDNA substrate in a DNA translocase
channel would mean that each single protein contact would have
to move almost 30 Å to maintain contact with the DNA during a
full catalytic cycle around the hexameric ring. This amount of
movement of a contact point within a tight hexameric structure
seems unlikely. Further, it would be energetically unfeasible to
compress the double helix greatly yet still produce power from
ATP hydrolysis. Therefore, an intermediate or “limited-escort”
model was proposed for FtsK, whereby 3 adjacent monomers in a
ring contact dsDNA simultaneously. This could allow for one in-
active subunit to be skipped if the monomers on either side of it
are proficient for translocation (25, 178). It would also imply that
two adjacent mutant subunits would produce an inactive hexamer
(178).

Both the rotary inchworm model and the partial-escort model
are consistent with a mechanism that is largely that of a revolution
motor. Both models propose that dsDNA touches the internal
surface of the hexameric ring and that the contact point between
the protein and the DNA revolves around the inner surface of the
protein multimer with minimal rotation (12, 25, 84). Both models
proposed that a defined number of bases would be moved per ATP
hydrolyzed if each subunit contacts the DNA substrate in an iden-
tical fashion around the ring and the DNA must be moved by a
defined length at each step to maintain these identical interac-
tions. A slight twisting of the DNA at each step is then necessary to

FIG 19 Single-molecule rotation of F1. (A) Schematic image of the experi-
mental setup. The �3	3 ring is fixed on the glass surface. A probe (fluorescently
labeled actin filament or 40-nm colloidal gold) is attached to the 
 subunit. (B)
Left, rotation of F1 with 3 binding pauses separated 120°, which is caused by
slow ATP binding at 200 nM. The inset shows the trajectory of the rotation.
Center, rotation of a mutant F1 (	E190D) with 3 catalytic pauses at 2 mM ATP.
Each pause is caused by the extremely slow ATP hydrolysis by the mutant.
Right, rotation of mutant F1 (	E190D) at 2 �M ATP. Due to slow ATP binding
and hydrolysis, 6 pauses are observed. The pauses before the 80° (arrowheads)
and 40° (arrows) substeps correspond to binding and catalytic pauses, respec-
tively. (C) Chemomechanical coupling scheme. Each circle indicates the
chemical state of the catalytic sites. One catalytic site is highlighted in dark
green. The central arrow (red) represents the angular position of the 
 subunit.
Each catalytic site retains the bound nucleotide as ATP until the 
 subunit
rotates 200° from the binding angle (0°). After a 200° rotation, the catalytic site
executes the hydrolysis of ATP into ADP and Pi, each of which is released at
240° and 320°, respectively.
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maintain the identity of the DNA and protein contacts around the
ring; the angle between adjacent subunit active sites in a hexamer
would be 360°/6 or 60°, whereas the angle between adjacent phos-
phates, around the dsDNA axis, would be 360°/10.5 (about 34°). If
precisely 2 bp is translocated per protein subunit, then there is a
requirement to twist the DNA an extra 8° to maintain the identity
of each protein-DNA contact. DNA within cells is negatively su-
percoiled, with a supercoiling density in E. coli of around 0.05. If
the in vivo negative supercoiling is accounted for, the amount of
twisting required at each FtsK power step is reduced to around 5°

per 2 bp translocated, which corresponds to one supercoil induced
for every 144 bp translocated. This theoretical value is almost
identical to the value of one supercoil per 150 bp observed using
single-molecule experiments (177). If this is the case, a translocat-
ing FtsK will produce a small amount of positive supercoiling
ahead of the protein. In the cell this might be removed either by
the action of DNA gyrase or by the occasional slipping of the
motor to release the torsional tension in the DNA.

With the close fit of the DNA into the central channel of FtsK,
movement of the DNA relative to the protein would not require
large amounts of rotational movement away from the central axis
of the DNA. The point(s) of contact between FtsK and DNA and
the concomitant wave of ATP binding and hydrolysis would re-
volve in a counterclockwise manner as viewed from the DNA en-
try side of the hexamer.

Complicated motors with multiple functional modules. In
cells, many motors, such as those involved in homologous recom-
bination, DNA repair, Holliday junction resolution, or nuclear
membrane-embedded pores or other membrane transporters, are
composed of multiple functional modules present either as hex-
amers or as other oligomers. For example, the Holliday junction
branch migration RuvB complex is made up of two hexamers that

sit at two vertices of a RuvA tetramer (181, 182). Continuous
translocation of the two dsDNA helixes with associated rotation
has been proposed (183). Although the hexameric ATPase might
participate in this motion process, the involvement of more than
one functional module makes the classification of the motor as
either rotation or revolution challenging. Chromosome or
genomic DNA either in eukaryotic cells or in bacteria, as a very
long string, would cause coiling or tangling if rotation of such a
long double helix occurred, and resolution of the coiling requires
the consumption of energy. Thus, it is speculated that some of the
functional complexes within these complicated motors might be-
long to the revolution motor class, since the use of the revolution
mechanism will avoid dsDNA coiling and tangling, as described in
the above sections.

Mechanism of Linear Motors

Linear motors are highly efficient, with estimates that 60 to 70% of
the energy from ATP hydrolysis is utilized for mechanical motion
(183–185). In myosin, the actin filament is proposed to accelerate
the structural changes in the force-generating element, which
couples the mechanical and chemical cycles. The lever arm con-
sists of the light-chain binding region. Variability in the length of
the light-chain binding region in different myosin isoforms
helped to prove the hypothesis that this region functions as a lever
arm (189). In kinesin, the major difference is that the ATP binding
step is associated with force generation, while the hydrolysis step
occurs with kinesin bound to the microtubule (95). The neck
linker or coiled-coil stalk has been demonstrated to be critical for
movement. In dynein, the coiled coil of the stalk which connects
the AAA ring and the microtubule binding domain is known to
change conformation in a nucleotide-dependent manner and
function as a force-generating element (94).

FIG 20 The open-to-closed transition of the 	 subunit of MF1. The accompanying swing motion of the C-terminal domain of the 	 subunit would push the 

subunit to induce the rotation.
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Conserved catalytic cycle of myosins. The modified Lymn-
Taylor cycle provides the minimal framework for explaining the
conserved properties of the actomyosin ATPase cycle (193). The
motor domain of myosin contains the sites for ATP binding (nu-
cleotide binding pocket [NBP]) and actin binding (actin binding
cleft) (17). These sites are coordinated with the reciprocal move-
ment of the lever arm region during the recovery and power stroke
states of the ATPase cycle (Fig. 11). In the absence of any nucleo-
tide, myosin binds to actin tightly and forms a strongly bound
complex. ATP binding to myosin causes the cross-bridge to de-
tach from actin and enter the weak binding states. During the
detached states, ATP is hydrolyzed by myosin, and the lever arm
region of myosin primes itself into a pre-power stroke state (Fig.
11, recovery stroke) (194). Thereafter, myosin complexed with the

hydrolysis products rebinds to actin in a weak binding state. Actin
binding activates the release of phosphate from the active site,
which is a key step in coupling the mechanical and chemical cycles,
and then the release of ADP occurs when myosin is strongly
bound to actin. During the actomyosin-bound state, myosin pulls
on the actin filament, performing mechanical work which is pro-
duced by the swing of the lever arm (Fig. 11, power stroke).

Nucleotide binding region. The coordination of ATP within
the nucleotide binding pocket, cleavage of its phosphoanhydride
bond, and the sequential release of products govern the mechan-
ical cycle of myosins (193, 196, 197). Small structural changes in
the conserved regions of the nucleotide binding pocket are com-
municated to the actin binding and lever arm regions (Fig. 23).
Switch I and switch II coordinate the sequential release of prod-

FIG 21 Role of the flexible inner channel loop of phage portal proteins in DNA one-way traffic. (A) Flexible loops within the phi29 (left) and SPP1 (right)
connector channels function to interact with dsDNA, facilitating DNA to move forward but blocking reversal of DNA during DNA packaging. (B) Demonstra-
tion of one-way traffic of dsDNA through wild-type connectors using a ramping potential or a switching polarity (right). (C) ssDNA is translocated via two-way
traffic with a loop-deleted connector. (Adapted from reference 13.)
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ucts and transmit information from the NBP to the actin binding
and lever arm regions (198). Switch II forms a salt bridge with
switch I and also interacts with the 
 phosphate of ATP (199, 200).
The P loop is also involved in the coordination of the � and 	
phosphates of ATP. Additionally, magnesium (Mg) is coordinated
to the oxygen on the 	 and 
 phosphates and makes a direct or
water-mediated contact with residues of switch I (Fig. 24). The
switch elements undergo a conformational change to a “closed”
state upon binding of ATP, which leads to a twisting of a seven-

stranded 	 sheet (transducer), resulting in the opening of the actin
binding cleft (201). Moreover, the twist of the transducer region
also translates toward the C-terminal lever arm region via a highly
conserved structural element called the relay helix (Fig. 24). The
relay helix communication pathway induces the recovery stroke

FIG 22 Effect of DNA chemistry and structure on its packaging of various bacteriophage dsDNA-packaging motors. (A) Design (upper panel) and results (lower
panel) demonstrating the blockage of dsDNA packaging by single-stranded gaps. When a single-stranded gap is present, only the left-end fragment of phi29
genomic DNA is packaged. (Adapted from reference 171 with permission from Elsevier.) (B) Chemical modification of the negatively charged phosphate
backbone on DNA packaging. Modification on the 3=¡5= strand does not block dsDNA packaging, but alteration on the other direction seriously affects DNA
packaging, evidenced by its traversal probability. The insertion of the modified DNA with up to 10 bp can be tolerated, while further increasing the length will
result in a 2-fold reduction of the traversal probability. The results support the finding of the revolution mechanism, showing that only one strand of the dsDNA
interacts with the motor channel during revolution. (Adapted from reference 172 with permission from Macmillan Publishers Ltd.)

FIG 23 Crystal structure showing the different subdomains of myosin along
with the actin, nucleotide binding, and lever arm regions (PDB code 1W7J).
(Reprinted from reference 236 with permission.)

FIG 24 Crystal structure of myosin showing the key structural elements in-
volved in the coordination of ATP and the energy transduction mechanism, as
discussed in the text (PDB code 1W7J). (Reprinted from reference 236 with
permission.)
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and formation of the pre-power stroke state of the lever arm. The
actin binding cleft is a deep cleft between the upper (U50) and
lower (L50) 50-kDa subdomains in the motor domain (Fig. 23).
The binding of myosin to actin is proposed to cause movement of
switch I, which induces a loss of Mg coordination, reducing its
affinity and causing its eventual release (202–204). These and
other rearrangements to the active site result in an isomerization
to the weak-ADP state of the pocket and eventual release of ADP.

Actin binding region. The open-closed transition of switch I
may be coupled to the closed-open equilibrium of the actin bind-
ing cleft. A 32-amino-acid-long alpha helix which traverses the
upper 50-kDa domain of myosins, called the HO helix, and a
related HG/HH helix have been demonstrated by molecular mod-
eling studies to be strongly coupled to the open-closed transition
of the cleft (205) (Fig. 24). Conformational changes in the HO
helix during the myosin ATPase cycle correlate with ATP-induced
dissociation and attachment to actin as demonstrated by intrinsic
tryptophan fluorescence (206). The relay helix near the lower 50-
kDa domain is a 4.7-nm-long � helix that has been well docu-
mented to be an essential feature of the force-generating region of
myosin (194, 207, 208). It connects the nucleotide binding site to
the lever arm region and goes from a kinked to a straight confor-
mation during formation of the pre-power stroke state (194, 207,
208). The HO helix and the relay helix are connected via the switch
II loop.

Lever arm region. The lever arm movement during the power
and recovery stroke stages of the catalytic cycle has been probed in
a number of studies, including intrinsic tryptophan fluorescence
(209, 210) polarization (211, 212), electron paramagnetic reso-
nance (213), and more recently FRET (208) studies. There is still
controversy about the timing of the power stroke in relationship
to the product release steps of the ATPase cycle. Examining the
kinetics of relay helix straightening (201) or lever arm rotation
(216) by FRET during actin-activated phosphate release suggests
that the power stroke occurs after actin binding and before phos-
phate release. A study that directly measured the movement of the
lever arm by FRET in myosin V demonstrated two phases of the
power stroke, a rapid phase that occurs before phosphate release
and a slower phase that occurs after phosphate release but before
ADP release (217). However, a recent crystal structure of myosin
VI provides evidence that phosphate release gates the movement
of lever associated with the power stroke (218). There is a good
agreement on the details of movement of the lever arm during the
recovery stroke. A FRET study reported that the reverse move-
ment of the relay helix from a straight to a kinked conformation is
associated with the reversal of the power stroke or the recovery
stroke (208). Other studies also agree that the straight-to-kinked
transition of the relay helix occurs after ATP binding and before
hydrolysis (194, 207).

The structural mechanism of dynein-based motility is not well
understood because of the lack of high-resolution structures.
However, several recent reports have used a combination of elec-
tron microscopy and X-ray crystallography to shed light on the
details of the key structural changes that drive microtubule bind-
ing and force generation (219). In the presence of an ATP ana-
logue there is closure of the motor ring, which drives the move-
ment of the linker domain, a structural element proposed to be
crucial for force generation. The coiled-coil helix of the stalk do-
main also slides in a nucleotide-dependent manner, which alters
the affinity for microtubules. Thus, dynein is similar to myosin in

that the ATP binding and hydrolysis prime the motor for force
generation, while binding to the track triggers the force-generat-
ing structural change.

Mechanism of Sequential Control and Coordination among
Channel Subunits

Nucleic acid translocation and duplex unwinding by hexameric
biomotors are coupled to the NTP binding and hydrolysis cycle. In
nucleic acid translocation, there are six NTP binding sites and at
least six nucleic acid binding sites in the hexamer. Individual sub-
units of a hexameric helicase may switch between several DNA
binding states. The binding of NTP to a hydrolysis site, near the
inner surface of the channel, induces a conformational change
that exposes one pair of negatively and positively charged regions
per nucleotide hydrolysis site. These charged regions are not of
equal size, are oriented at an angle to the circumferential merid-
ian, and are not constant, appearing and disappearing with the
binding and hydrolysis of NTP, respectively. These charged re-
gions can interact with the closest negatively charged DNA phos-
phate, which gives an “electrostatic push” in the direction of the
charged-pair axis. The combined effect of the charged pairs pro-
duces a sustained torsional and axial thrust as NTPs are hydro-
lyzed sequentially around the motor ring.

Sequential action of the phi29 dsDNA-packaging motor was
originally shown in phi29 pRNA (129, 220) and further in ATPase,
evidenced by Hill constant determination and binomial distribu-
tion inhibition assays through the study of the effects of introduc-
ing mutant subunits on the oligomerization of gp16 ATPase (12,
50, 127, 128). The results also suggest that conformational changes
occur within the gp16 subunits in different nucleotide states that
enable them to communicate with each other.

POTENTIAL MOTOR APPLICATIONS

This review offers potential answers to the puzzles in nanotech-
nology that may shed light on inventions in the motion world. The
system of riding along dsDNA provides a prototype for nanome-
chanical devices and for cargo transportation under control and
along predefined paths at the nanoscale. The revolution mecha-
nism offers a hint for the design of nanomolecular motors that can
manipulate biomolecules in a controlled fashion. These nanoma-
chines can also be applied for the construction of sophisticated
nanodevices, including molecular sensors (221–223), bioreactors
(224), chips (225), DNA-sequencing apparatuses (169, 221, 226–
229), or other electronic and optical devices (230, 231). In addi-
tion, these multisubunit biocomplexes could serve as drug targets
for therapeutics and have potential for diagnostic applications
(222, 223, 232, 233), especially as the biomotors have an advantage
of a high stoichiometry that could be applied to solve the drug
resistance issue (234, 235).

CONCLUDING REMARKS AND PERSPECTIVES

Nanobiomotors are tiny machines that utilize a primary energy
source to do mechanical work. They are crucial to the sustenance
of living systems, since they provide for biological motion, help
direct cellular components to proper destinations, package DNA,
contract muscles, and perform a variety of other functions.
Biomotors exhibit a diversity of complex structures. Most have the
same basic components, including a mechanical frame (usually
composed of proteins) with both moving and static parts, pow-
ered by an energy supply. This energy is typically derived from the

Revolution, Linear, or Rotation Biological Nanomotors
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binding and hydrolysis of ATP, which lead to conformational
changes in the motor protein, resulting in movement. Some mo-
tors use energy produced from ion gradients. These motors are
typically divided into categories based on the type of motion dis-
played: linear, rotary, and revolution motors. The action of revo-
lution enables movement to be free of coiling and torque. Revo-
lution motors have now solved many puzzles associated with viral
DNA-packaging motor studies. They also have settled the discrep-
ancies concerning the structure, stoichiometry, and functioning
of DNA translocation motors. The rotation and revolution mech-
anisms can be distinguished by the size of channel: the channels of
rotation motors are equal to or smaller than 2 nm, whereas chan-
nels of revolution motors are larger than 3 nm. Rotation motors
use parallel threads that operate with a right-handed channel,
while revolution motors use a left-handed channel to drive the
right-handed DNA in an antiparallel arrangement.
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